1. Determine the slope of each of the following line segments.

Slope= under ined

2. Determine the slope of the line passing through each of the following pairs of

slope AB =
$$\frac{10-6}{7-3} = \frac{4}{4} = 1$$

slape AB =
$$\frac{10-6}{7-3} = \frac{4}{4} = 1$$
 slape CD = $\frac{5-(-3)}{-2-2} = \frac{8}{-4}$

3. Draw lines which each given slope, passing through each given point, on the grid below.

- a) $m = \frac{2}{3}$, passing through (0, 2)
- b) $m = -\frac{3}{4}$, passing though (-5, 4)
- c) m=2, passing through (5, 0)
- d) m=0, passing through (3, -8)
- 4. The slope of AB is 2/3. Determine the slope of a line that is
 - a) parallel to AB.

b) perpendicular to AB.

5. Which of the following line segments are parallel? What are their slopes?

6. What is the slope of a line that is perpendicular to the line segment shown below?

Line segments: AB | PF Slope= 1

Slope=
$$\frac{7}{3}$$

7. Line segment AB has endpoints A(-4, -1) and B(-1, 5). Line segment CD has endpoints C(1, 1) and D(5, -1). Are AB and CD parallel, perpendicular, or neither?

Explain. Signe AB =
$$\frac{5-(-1)}{-(-(-4))} = \frac{6}{3} = 2$$

AB \perp CD because their slaves are regative responsible slope CD = $\frac{1-(-1)}{1-5} = \frac{2}{-4} = -\frac{1}{2}$ of each other.

8. Write the equation of a line with a slope of -2 and a y-intercept of 5.

$$y = -2x + 5$$

9. Write the equation of each of the following lines in slope-intercept form.

10. Graph the following lines on the grid below:

11. Describe the graph of the equation
$$y-3=\frac{2}{3}(x-5)$$
.

12. A line has a slope of -3/4 and passes through the point (-2, 6). Write its equation in slope-point form.
$$\sqrt{-6} = -\frac{3}{4}(\chi + 2)$$

orm.

$$y-1 = \frac{3}{7}(x-3)$$
 $\frac{1}{7}$ slope point form
or $y+2 = \frac{3}{7}(x+4)$
 $\frac{3}{7}(x+4)$ $\frac{3}{7}$
 $\frac{7}{7}$ $\frac{3}{7}$ $\frac{3}{7}$

Slage = 5-4 = 1

14. Line AB is represented by the equation
$$y=2x + 5$$
.

a) Write the equation of a line that is parallel to AB and passes through the point (1, -3). Answer in slope-point form.

$$y + 3 = 2(x - 1)$$

b) Write the equation of a line that is perpendicular to AB and passes through the point (1, -3). Answer in slope-point form.

$$y + 3 = -\frac{1}{2}(x - 1)$$

15. Determine the equation of a line that passes through the points (-3, 4) and (1, 5)

a) in slope-point form.

$$y-4 = \frac{1}{4}(x+3)$$

$$(5)$$
 $y-5=\frac{1}{4}(x-1)$

b) in slope-intercept form.

$$y = \frac{1}{4}x - \frac{1}{4} + \frac{5}{7}x^{4}$$
 $y = \frac{1}{4}x + \frac{19}{4}$ or $y = \frac{x}{4} + \frac{19}{4}$

16. Identify the form each equation is in, then change to general form.

a)
$$5x-2y=10$$
 = standard form
 $5x-2y-10=0$

b)
$$y+1=\frac{2}{5}(x-3)$$
 \leftarrow slope point form
$$\begin{pmatrix} y+1 &= \frac{2}{5}(x-3) \\ 5y+5 &= 2(x-3) \\ 5y+5 &= 2x-6 \\ 0 &= 2x-5y-11 \end{pmatrix}$$
c) $y=\frac{3}{4}x-2$ \leftarrow slope -intercept form
$$\begin{pmatrix} y &= \frac{3}{4}x-2 \\ 4y &= 3x-8 \\ 0 &= 3x-4y-8 \end{pmatrix}$$

17. Determine the slope of the line with this equation: 3x - 2y + 8 = 0.

$$3x + 8 = 2y$$

 $y = \frac{3}{2}x + 4$: Slope = $\frac{3}{2}$

18. Calculate the x and y-intercepts, then graph the line 2x - 3y + 12 = 0.

$$x-ixt$$
: $2x-3(0)+12=0$
 $2x+12=0$
 $2x=-12$
 $x=-6$
 $(-6,0)$
 $y-ixt$: $2(0)-3y+12=0$
 $12=3y$
 $y=4$
 $(0,4)$

AND REVIEW CHAPTER 3 (ON FACTORING) AND CHAPTER 2 (TRIGONOMETRY).